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Structure of equations of macrophysics
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The first and the second laws of thermodynamics form the constraints on the equations describing macro-
physical phenomena. It is argued in this paper that there are some additional universal constraints. These
constraints are caused by the Hamiltonian structure of microequations. Previously one feature of micromotion,
its reversibility, was used by Onsager to explain the observed reciprocity relations. Hamiltonian structure is
richer than reversibility and yields richer consequences. Some of these consequences are a nonlinear version of
Onsager’s relations, Hamiltonian structure of reversible equations of macrophysics, and quasi-Hamiltonian
structure of irreversible equations.
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I. INTRODUCTION

It became common wisdom after Clausius@1# that macro-
world equations must obey the first and second laws of th
modynamics. Are these two universal laws of Nature
only constraints which every macroscopic theory must ob
An indication that there might be some additional univer
features of the macroworld stems from the wide experim
tal justifications of classical models of reversible processe
mechanics: all these models possess the Hamiltonian s
ture. The Hamiltonian structure reflects a very special way
reciprocal interactions between various degrees of freed

Equations describing the irreversible processes also h
a special structure. The first proposition of this kind w
made by Thompson for thermoelectric phenomena. Ana
ing Thompson’s observation and the similar facts gained
other branches of physics, Onsager recognized@2# that any
linear macroscopic theory of irreversible processes m
obey, in addition to the first and second laws of thermo
namics, some reciprocal relations, and the origin of th
relations is the reversibility of micromotion.

To formulate the Onsager result in unambiguous ter
consider an isolated macroscopic system characterized
finite number of macroscopic ‘‘kinematic’’ parametersy
5(y1, . . . ,ym). The first and second laws of thermodynam
ics state the following.

~i! There are two additional characteristics of the syste
energyE and entropyS.

~ii ! There is an equilibrium state in whichE, S, andy do
not change; the system can stay in this state indefinitely

~iii ! The equilibrium values ofE, S, andy are linked by
the relation

E5E~S,y!; ~1.1!

being solved with respect toS, this relation can also be writ
ten in the form

S5S~E,y!. ~1.2!

The functionsE(S,y) or S(E,y) characterize the equilibrium
properties of the system.

~iv! In any process of an isolated system,y(t), energy
does not change.
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r-
e
?
l
-

in
c-
f
.

ve
s
z-
n

st
-
e

s,
a

-

,

~v! In any process of an isolated system, entropy does
decrease,

dS

dt
>0. ~1.3!

Note that the work of external force,dA, and the heat
supply,dQ, are zero for an isolated system and the equat
of the first law of thermodynamics,dE5dA1dQ, is satis-
fied automatically.

To describe the evolution of the system from some stat
the equilibrium state, one has to set up the equations fory(t)
and S(t) (E does not change!. To narrow the subject, we
focus, following Onsager, only on the case of the local-
time dependence ofdy/dt anddS/dt on y(t) andS(t). Then
the general evolution equations can be written in the form
a system of ordinary differential equations,

ẏm5Gm~y,S!, ~1.4!

Ṡ5D~y,S!. ~1.5!

Here and in what follows, Greek indicesm,n,l run through
values 1, . . . ,m.

The first two laws of thermodynamics do not put co
straints on the functionsGm andD, except that the dissipa
tion function D must be positive, and the solutions of Eq
~1.4! and~1.5!, y(t) andS(t), tend to the limit values linked
by a known function~1.2! ast→`. The question under con
sideration is as follows: Are there other constraints for fun
tions Gm andD?

In most cases, one can accept the hypothesis of local e
librium: Eq. ~1.2! holds not only at equilibrium but also a
each instant in the path to equilibrium. Since the equilibriu
properties of the system, expressed by the function~1.2!, are
supposed to be known, the local equilibrium hypothe
makes entropy a known function ofy. One can say that the
local equilibrium hypothesis eliminates one entry, the dis
pation functionD, which can be expressed in terms ofGm

andFm5]S(E,y)/]ym,
©2003 The American Physical Society26-1
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D5GmFm>0.

Summation over repeated indices is implied. Following
tradition, we callGm andFm thermodynamic fluxes and the
modynamic forces, respectively.

Further constraints depend on the type ofy variables.
First, let y variables be ‘‘coordinate-type’’ variables~this
term will be explained later in Sec. II!. Onsager considere
the case of linear equations whenGm andFm are linear func-
tions of y.

Onsager showed that, due to reversibility of micromotio
Gm must be expressed in terms ofFm by the relations

Gm5DmnFn , ~1.6!

where the dissipation coefficientsDmn are symmetric con-
stants,

Dmn5Dnm. ~1.7!

Onsager’s relation~1.7! is sometimes called the third law o
thermodynamics. Perhaps it is reasonable to use this term
the issues concerning all constraints on macroequations
are in addition to those of the first and second laws.

There were numerous attempts to generalize Onsag
relations to nonlinear phenomena whenGm are some nonlin-
ear functions ofFm . The most widely used is the propositio
that there exists a scalar functionF(Fm) such that

Gm5
]F~Fm!

]Fm
. ~1.8!

If F is a quadratic function,F5 1
2 DmnFmFn , Eq. ~1.8!

transforms to Eqs.~1.6! and ~1.7!. Most models of con-
tinuum mechanics are based on potential relations~1.8!. For
example, such are the models of plasticity theory with a
mogeneous functionF of the first order. Potential relation
~1.8! motivated various variational principles which, in tur
are being used often as a basis for mathematical modeli

Relations~1.8! are very convenient for studying such i
sues as thermodynamic stability or correctness of the co
sponding mathematical problems. The question is, howe
whether Eq.~1.8! is ‘‘a universal law of Nature’’ or just a
matter of mathematical convenience.

Some doubts as to the validity of Eq.~1.8! in general
arose from the Onsager observation that Eq.~1.7! holds true
only in the absence of magnetic field. If magnetic fieldm is
presented, the coefficientsDmn are not necessarily symme
ric, and Eq.~1.7! must be replaced by the relation

Dmn~m!5Dnm~2m!. ~1.9!

Obviously, ifDmn depend onm, Eq.~1.8! does not hold even
in the linear case.

The consequences of reversibility of micromotion f
nonlinear phenomena have been studied by Stratanovich@6#.
He obtained a series of constraints in a quite general se
and did not find a confirmation of Eq.~1.8!. He noted that all
attempts to prove Eq.~1.8! failed. Moreover, there are ex
amples when Eq.~1.8! does not hold.
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Reviewing the situation with nonlinear generalizations
Onsager’s relations, Mazur wrote in 1996@7# ‘‘ . . . Another
issue of interest has been whether a generalization existe
the Onsager reciprocity which would hold fornonlinearlaws
describing irreversible processes. At the first IUPAP Inter
tional Conference on statistical mechanics, held in 1949
Florence, Casimir presented a paper ‘On some aspect
Onsager’ theory . . . ’ in which he remarks‘ . . . in its
present form Onsager’s theory applies only to equations
@linear# type.’ Onsager, who was present, offered the follo
ing comment, ‘Linear relations between rates of flow a
driving forces are assumed in my derivation of recipro
relations. The possibilities of useful generalizations have
been fully explored; none have been found so far.’ It wou
seem that Onsager’s comment has retained its actualit
this day.’’

It is argued in this paper that a nonlinear version of O
sager’s relations has the form

Gm5Dmn~Fl!Fn ~1.10!

with the symmetric~in the absence of magnetic field! dissi-
pation coefficientsDmn,

Dmn~Fl!5Dnm~Fl!. ~1.11!

The functionDmnFmFn must be non-negative,

Dmn~Fl!FmFn>0 for any Fm ,

in order to comply with the second law of thermodynamic
If Dmn depend on magnetic field, Eq.~1.11! is replaced by

a more complex relation discussed in Sec. V. The dissipa
coefficients may depend on the parameterE.

It will be seen in Sec. II that Eqs.~1.10! and~1.11! can be
obtained from a little known paper by Kolmogorov@8#.
Equations~1.10! and ~1.11! are, to some extent, misleading
in fact, they do not put constraints on the functional dep
dence ofGm on Fm beyond the pointFm50 ~see Sec. IX!.
Nevertheless, there are serious reasons to write this de
dence in the form~1.10! and ~1.11!; they are discussed in
Sec. IX.

Nonlinear Onsager’s relations~1.10! and ~1.11! are a
byproduct of consideration of the following questions: M
cromotion possesses a much richer peculiarity than rev
ibility; it is governed by equations with the Hamiltonia
structure. The Hamiltonian structure of microequatio
should yield richer consequences than just reversibility. W
are the constraints on the macroequations caused by
Hamiltonian structure of microequations? We show that
further constraints appear for the coordinate-typey variables.
However, ify variables are canonical, i.e., if they are some
the coordinates and momenta of the underlying Hamilton
system, then the equations take a special quasi-Hamilto
form: there exist an effective HamiltonianHeff(S,y) and dis-
sipative coefficientsDmn(S,y) such that

dym

dt
5vmn

]Heff~S,y!

]yn
2

Dmn~S,y!

T~S,y!

]Heff~S,y!

]yn
, ~1.12!
6-2
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T5
]Heff~S,y!

]S
, ~1.13!

dS

dt
5

Dmn~S,y!

T2~S,y!

]Heff~S,y!

]ym

]Heff~S,y!

]yn
. ~1.14!

Here vmn is a constant antisymmetric tensor defining t
Hamiltonian structure@for exact definition, see Eq.~2.18!#,
andT is temperature.

The origin of the link between microequations and ma
roequations was first revealed by Boltzmann: the time sc
of macrovariables is much bigger than that of microva
ables. One can say that macroequations can be obtaine
the elimination of fast variables from microequations. Th
modynamics is a theory of slow variables for microdyna
ics. Boltzmann’s observation enabled Hertz@9# to derive the
laws of equilibrium thermodynamics from Hamiltonian m
chanics~a modern exposition of Hertz’s results, including t
case of low-dimensional systems, can be found in Chap.
@10#!. Hertz’s paper made it clear that the reason why
laws of equilibrium thermodynamics are true is the Ham
tonian structure of microequations.

Note that the term ‘‘Hamiltonian structure’’ is unambigu
ous if the phase space of the dynamical model of microwo
has been fixed; otherwise any system of ordinary differen
equations can be put in Hamiltonian form~see Appendix A!.
The choice of the phase space and the Hamiltonian is de
mined by physics of the phenomena under consideration

One may wonder whether the Hamiltonian structure
microdynamics is necessary to observe the classical equ
rium thermodynamics on the macrolevel. This issue is d
cussed in Appendix A under some assumptions which do
seem physically constraining. It turns out that microdynam
equations may have slightly more general structure than
standard Hamiltonian equations and still yield the laws
equilibrium thermodynamics.

Hertz considered the classical~nonquantum! microworld,
as we will do throughout this paper. The quantum nature
the microworld affects the macroscopic laws, and a con
tent theory should start from the laws of quantum mechan
We assume, however, that in the transition micro→macro
there is a level of description at which classical Hamilton
mechanics provides an adequate picture of microdynam
Such an assumption restricts the range of admissible va
of macroparameters.

There was a long and difficult way to recognize that t
laws of irreversible nonequilibrium thermodynamics do n
contradict the underlying reversible Hamiltonian dynam
~see, e.g., the review@11# and pp. 77–79 of@10#!. A clear
understanding of how the laws of nonequilibrium thermod
namics may be obtained from Hamiltonian mechanics w
achieved by Kubo@4,5# ~see also Zwanzig@12#!. Kubo con-
sidered a special case of open systems, the driven syste
parameter of a Hamiltonian system, sayy, is changed slowly
in a given way,y(t), and one wonders how the force causi
this change depends ony(t). In the linear case, Kubo foun
this dependence explicitly from an asymptotic analysis
06612
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Liouville’s equation and established the relation between
dissipative coefficients and a correlation of thermodynam
fluxes in equilibrium.

Another line of thought stemmed from an observation t
Onsager’s reasoning can be put on mathematical ground
one assumes that macrodynamics is a Markov process
erned by linear ordinary stochastic differential equatio
@3,13#. Time reversibility yields then Onsager’s reciproc
relations. The criterion of reversibility for Markov’s continu
ous processes in the nonlinear case was obtained by Kolm
orov @8# and, in a slightly generalized form, by Yaglom@14#.
Stratanovich@6# studied the consequences of reversibility f
the general Markov noncontinuous and non-Markov stoch
tic processes.

An attempt to take into account the Hamiltonian structu
of microdynamics was made in@15# for the case of canonica
slow variables. It was suggested that, at equilibrium,
probability flux of Markov’s process coincides with that o
the underlying ergodic Hamiltonian system. It turns out th
the probability flux hypothesis selects a quasi-Hamilton
form of equations of the slow evolution~1.12! and ~1.14!.
Originally, these equations were obtained in@15# in a differ-
ent equivalent form~2.30!.

The aims of this paper are as follows: to derive a nonl
ear version of Onsager’s relation for coordinate-typey vari-
ables~1.10! and~1.11!; to justify the probability flux hypoth-
esis for canonical variables by asymptotic analysis
Liouville’s equation; to obtain the corresponding cons
quences for constitutive equations of solids and dynam
equations for defects in a crystal lattice; and to extend
results for interacting systems with one noncanonical s
variable—energy—and to conduct a limited transition
continuum theory to obtain the equations of nonlinear h
conductivity.

Restraining the consideration by isolated systems does
affect the results on the structure of the governing equati
for local-in-space systems: for such systems, isolation me
just a special choice of the boundary conditions.

Note that the limit transition to continuum theory is
nontrivial issue. The general form of continuum equatio
compatible with the Hamiltonian structure of microequatio
has yet to be established. Some observation on the struc
of equations used in continuum mechanics can be foun
@26,27#. It remains to be seen whether the Hamiltonian str
ture of microequations imposes additional constraints.

The above-discussed special structure of macroequat
pertains to the case when the system has two characte
well-separated time scales, namely fast time and slow ti
Elimination of the fast variables yields classical thermod
namics, which we will call also ‘‘primary thermodynamics.
There are situations with three well-separated time scales
such cases, the system is characterized by three type
variables: fastest, intermediate-fast, and slow. Elimination
the fastest variables yields the equations for the intermedi
fast and slow variables. The corresponding laws are the l
of primary thermodynamics. Equations of primary thermod
namics possess the special structure discussed above. E
nation of the intermediate-fast variables from the equati
6-3
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of primary thermodynamics gives the equations for the s
variables. The theory of slow variables can be called ‘‘s
ondary thermodynamics’’ or ‘‘thermodynamics of attractor
because the existence of attractors is a characteristic fe
of the equations of primary thermodynamics. An importa
example is a turbulent motion of fluids. The fastest time i
characteristic time of molecule collisions. Primary thermod
namics brings the Navier-Stokes equations. These equa
have two characteristic times, namely the characteristic t
of the change of velocity at a space point and the charac
istic time of the change of average flow parameters~such as
Reynolds’ stresses!. Turbulence theory, which studies the a
eraged characteristics of the flow, is, in fact, thermodynam
of attractors of Navier-Stokes equations. Thermodynamic
attractors is at an embryonic stage. A brief account of i
given in Sec. X.

The paper composition is as follows: In the next secti
we review the consequences of reversibility of Markov’s p
cesses, formulate a nonlinear version of Onsager’s relati
briefly discuss the probability flux hypothesis, and outli
the derivation of the quasi-Hamiltonian structure from t
probability flux hypothesis. In Secs. III–V, the validity of th
probability flux hypothesis is justified by the asympto
analysis of Liouville’s equation. The quasi-Hamiltonia
structure is used to establish a general form of constitu
equations for solids in Sec. VI. Nonlinear heat conductiv
is considered in Sec. VII. The quasi-Hamiltonian structu
for dynamics of defects in solids is obtained in Sec. VIII. T
features of the nonlinear version of Onsager’s relatio
~1.10! and ~1.11! are discussed in Sec. IX. Secondary th
modynamics is reviewed in Sec. X. This is followed by
discussion of the term ‘‘Hamiltonian structure’’ and a d
scription of microdynamic equations which are compati
with equilibrium thermodynamics in Appendix A, and som
auxiliary estimates in Appendix B.

II. EVOLUTION TO EQUILIBRIUM AS A STOCHASTIC
PROCESS

A. Markov’s stochastic process

Macroparameters are always fluctuating due to interac
with fast degrees of freedom, and thus they can be con
ered as some random variables. Denote macroparamete
ym,m51, . . . ,m and their probability density at instantt by
f (t,y). It will be derived in the subsequent sections th
under some assumptions, the functionf (t,y) obeys the
Fokker-Planck equation

] f ~ t,y!

]t
1

]Jm

]ym
50,

Jm5Vm~y! f 2Dmn~y!
] f

]yn
, ~2.1!

whereJm is the probability flux andDmn are the diffusion
coefficients. The diffusion coefficients are symmetric,Dmn

5Dnm, and positive,Dmnxmxn>0 for anyxn . The probabil-
ity density ofy under condition thaty takes the valuey0 at
06612
-
’
ure
t
a
-
ns
e
r-

s
of
s

,
-
s,

e

e

s
-

n
d-
by

,

instant t0 , f (t,yut0 ,y0), also satisfies Eq.~2.1!. This indi-
cates thaty(t) may be considered as a stationary Mark
stochastic process obeying some ordinary stochastic di
ential equations,

dym

dt
5Fm~y!1sa

m~y!ẇa, ~2.2!

whereẇa (a51, . . . ,s, s>m) are some independent whit
noises. There is a link betweenFm,sa

m andVm,Dmn. The link
depends on the sense of time derivative in Eq.~2.2!. If Eq.
~2.2! is understood in Stratanovich’s sense, then

Fm5Vm1
1

2
sa

m ]sn
a

]yn
, Dmn5

1

2
sa

msa
n . ~2.3!

The diffusion coefficientsDmn are very small@the scale of
smallness is established by Eq.~2.32! below#. Therefore, ac-
cording to Eq.~2.1!, f (t,y) in the first approximation is thed
function, f (t,y)5d„y2 ȳ(t)…, whereȳ(t) is a solution of the
ordinary differential equations

dȳm

dt
5Vm~ ȳ!. ~2.4!

Equations~2.4! hold true also for the average value
ym, *ym f (t,y)dy, in the first approximation. This can b
obtained by averaging Eq.~2.2!. In addition, one can find
from the averaged equation~2.2! the corrections to the right
hand side of Eq.~2.4!. They turn out to be of the orde
Dnl]2Vm/]yn]yl.

Equations~2.4! for the average values ofy are exact in the
linear case whenVm are linear functions ofy and Dmn are
constants. Markov’s character of macrovariables has b
observed in many physical systems@16#.

B. Reversibility of Markov’s process

Denote byf (t1 ,y1 ;t2 ,y2) the two-point probability den-
sity function of the processy(t): probability of the event that
y(t1) belongs to a small vicinity of the pointy1, while y(t2),
in a small vicinity of the point y2, is equal to
f (t1 ,y1 ;t2 ,y2)nV1nV2 , nV1 andnV2 being the volumes
of the vicinities. It is seen from the definition that, for an
process,f (t1 ,y1 ;t2 ,y2) is a symmetric function,

f ~ t1 ,y1 ;t2 ,y2!5 f ~ t2 ,y2 ;t1 ,y1!. ~2.5!

A stochastic process is called reversible if the two-po
probability density possesses the following property: for a
t1 ,t2,

f ~ t1 ,y1 ;t2 ,y2!5 f ~ t2 ,y1 ;t1 ,y2!. ~2.6!

In accordance with Eq.~2.5!, the definition of reversibility
can be also written as

f ~ t1 ,y1 ;t2 ,y2!5 f ~ t1 ,y2 ;t2 ,y1!. ~2.7!
6-4
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The two-point probability densityf (t1 ,y1 ;t2 ,y2) can be ex-
pressed in terms of the conditional probabilityf (t1 ,y1ut2 ,y2)
by the relation

f ~ t1 ,y1 ;t2 ,y2!5 f ~ t1 ,y1ut2 ,y2! f ~ t2 ,y2!.

In terms of the conditional probability, the reversibilit
condition ~2.7! takes the form

f ~ t1 ,y1ut2 ,y2! f ~ t2 ,y2!5 f ~ t1 ,y2ut2 ,y1! f ~ t2 ,y1!.
~2.8!

Assume that there is an equilibrium state with an equilibri
distribution f `(y), and the stochastic process is stationa
thus the conditional probabilityf (t1 ,y1ut2 ,y2) depends only
on the time shift t5t12t2 : f (t1 ,y1ut2 ,y2)5 f (t,y1uy2).
Then reversibility of the stochastic processat equilibrium,
according to Eq.~2.8!, means that the conditional probabilit
must satisfy the equation

f ~ t,y1uy2! f `~y2!5 f ~ t,y2uy1! f `~y1!. ~2.9!

Equation ~2.9! puts some strong constraints on the adm
sible values of drifts,Vm, and diffusion coefficients,Dmn.
These constraints were first found by Kolmogorov in 19
@8#: in order for Eq. ~2.9! to be true, it is necessary an
sufficient that probability fluxJm vanishes on the equilibrium
distribution,

Jm5Vm f `2Dmn
] f `

]yn
50, ~2.10!

or, equivalently,

Vm5Dmn
] ln f `

]yn
. ~2.11!

Kolmogorov obtained Eq.~2.11! in a slightly different form
linked to the technicalities of his proof.

Reversibility condition~2.6! is written for the case wheny
variables are coordinate-type variables, i.e., they do
change sign for a reversed process. If some of they variables
are velocity-type variables, i.e., they change sign for a
versed process, then Eq.~2.6! must be changed according
to incorporate the sign change. The constraints imposed
such a modified reversibility condition on drifts and diffusio
coefficients were obtained by Yaglom@14#. Later,
Kolmogorov-Yaglom relations were rediscovered in a nu
ber of papers~see@17#!. Condition~2.6! is sometimes called
the detailed balance.

C. Einstein’s formula

Let y be slow variables of an ergodic Hamiltonian syste
The system is isolated and has energyE. Thermodynamic
properties of the system are characterized by entr
S(E,y). Probability distribution ofy variables at equilib-
rium, f `(y), is given by Einstein’s formula,

f `~y!5ceS(E,y), ~2.12!
06612
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wherec is a normalizing constant.
Einstein’s formula has an asymptotic character: it is va

in the limit of an infinite number of fast degrees of freedo
Regarding the derivation of Einstein’s formula ‘‘from me
chanics’’ and its generalization for a finite number of fa
degrees of freedom, see@18,10#.

D. Nonlinear Onsager relations

Combining Kolmogorov’s criterion of reversibility with
Einstein’s formula~2.12!, we arrive at the expression for th
drift in terms of diffusion coefficients and entropy,

Vm5Dmn~y!
]S

]yn
. ~2.13!

Thus, the evolution equations fory take the form

dym

dt
5Dmn~y!

]S

]yn
. ~2.14!

Here we dropped the bar fromy since the actual values ofy
deviate only slightly from the average values.

Entropy is proportional to a large number, the number
fast degrees of freedom. Therefore, the right-hand side of
~2.14! may be finite even thoughDmn are small.

Entropy grows according to the equation

dS~E,y!

dt
5Dmn~y!

]S

]ym

]S

]yn
. ~2.15!

If entropy has the only point of maximum,ŷ, then the system
goes to this point.

Thermodynamic fluxes and thermodynamic forces in
case under consideration are the drift componentsVm and the
derivatives of entropy, respectively. In the linear approxim
tion, whenDmn are constants andS is a quadratic function,
Eqs. ~2.13! coincide with Onsager’s statement. Thus, it
sensible to consider Eq.~2.13! as a nonlinear version of On
sager’s relations. The Fokker-Planck equation~2.1! moti-
vates the term ‘‘diffusion coefficients’’ forDmn while the
entropy equation~2.15! justifies the term ‘‘dissipation coef
ficients.’’ We use both terms forDmn depending on the con
text. This duality is the essence of fluctuation-dissipat
theorem.

E. Ergodic Hamiltonian systems and the probability flux
hypothesis

Now let the dynamics of the system be governed
Hamiltonian equations, and the slow variablesy be some
variables of these equations. In this case, we call they vari-
ables canonical variables. Denote the fast variables of
system byx5(x1, . . . ,x2n) and the Hamiltonian byH(x,y).
We identify the firstn coordinates of pointx with generalized
6-5
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coordinates of the system,q5(q1, . . . ,qn), and the lastn
coordinates with generalized momentap5(p1 , . . . ,pn).
Similarly, y5(Q1, . . . ,QM, P1•••PM), 2M5m. The
Hamiltonian equations are

dq

dt
5

]H

]p
,

dp

dt
52

]H

]q
,

dQ

dt
5

]H

]P
,

dP

dt
52

]H

]Q
.

es
ite

ite

q.

06612
In index notation they take a shorter form,

dxi

dt
5v i j

]H

]xj
, ~2.16!

dym

dt
5vmn

]H

]yn
, ~2.17!

where Latin indicesi , j , . . . , runthrough values 1, . . . ,2n,
andv i j ,vmn are constant antisymmetric tensors:
v i j 51 if i<n, j 5 i 1n; v i j 521 if j <n, i 5 j 1n; v i j 50 otherwise; ~2.18!

vmn51 if m<M , n5m1M ; vmn521 if n<M , m5n1M ; vmn50 otherwise.
r

d
rob-

-

st be
We assume that in the (x,y)-phase space the surfac
H(x,y)5E are compact and bound the regions with fin
volumeG(E),

G~E!5E u~E2H~x,y!!dxdy. ~2.19!

u(E) is the step function:u(E)51 for E.0 andu(E)50
for E<0. In thex-phase space, for each fixedy, the surfaces
H(x,y)5E are compact and bound the regions with a fin
volumeG(E,y),

G~E,y!5E u~E2H~x,y!!dx. ~2.20!

Motion of the system~2.16! and ~2.17! is assumed to be
ergodic on the energy surfacesH(x,y)5E in (x,y)-phase
space. For each fixedy, motion of the system~2.16! is also
assumed ergodic on the energy surfacesH(x,y)5E in
x-phase space. Denote entropy of the system~2.16! by
S(E,y). One can show@9# that

S~E,y!5 ln G~E,y!.

Besides, Einstein’s formula~2.12! holds true~in the limit of
largen) @10,18#.

In what follows, it is convenient to use instead of E
~2.12! the exact formula@10,18#

f ~`,y!5
1

GE~E!

]

]E
eS(E,y)

5
1

T~E,y!GE~E!
eS(E,y), ~2.21!

where T5]S/]E is the absolute temperature andGE(E)
[dG(E)/dE.

The probability densityf (t,x,y) of (x,y) variables obeys
Liouville’s equation,
] f

]t
1v i j

]H

]xj

] f

]xi
1vmn

]H

]yn

] f

]ym
50. ~2.22!

Integrating this equation overx, one obtains the equation fo
the probability density ofy variables,f (t,y),

] f ~ t,y!

]t
1

]Jm

]ym
50, f ~ t,y!5E f ~ t,x,y!dx,

Jm5E vmn
]H

]yn
f ~ t,x,y!dx. ~2.23!

The probability density at equilibrium,f (`,x,y), is equal to
const3d„E2H(x,y)…. The probability flux at equilibrium,
can be found explicitly@15#,

Jm52
1

GE~E!
vmn

]eS(E,y)

]yn
. ~2.24!

Let the evolution ofy variables to equilibrium be modele
as a Markov stochastic continuous process. Then the p
ability density function ofy variables, f (t,y), obeys the
Fokker-Planck equation

] f ~ t,y!

]t
1

]

]ym
J(M )

m 50,

J(M )
m 5Vm f ~ t,y!2Dmn

] f ~ t,y!

]yn
. ~2.25!

Here we add index~M! to the probability flux of Markov’s
process to distinguish it from the probability flux in the in
tegrated Liouville equation~2.23!. Since the original Hamil-
tonian system is autonomous, the stochastic process mu
stationary. Therefore,Vm andDmn are the functions ofy only
and do not depend on time.
6-6
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Function f (t,y) is the same in the integrated Liouvill
equation~2.23! and the Fokker-Planck equation~2.25!. Thus,
divergences of the probability fluxesJm andJ(M )

m must coin-
cide,

]J(M )
m

]ym
5

]Jm

]ym
.

We accept a stronger condition~the probability flux hy-
pothesis!: at equilibrium,

J(M )
m 5Jm. ~2.26!

From Eq.~2.26! and the expressions for probability fluxes
Markov’s process~2.25! and Hamiltonian system~2.24!, we
have

Vm
eS

GET
2Dmn

]

]yn

eS

GET
52vmn

1

GE~E!

]

]yn
eS.

~2.27!

Taking into account that

]

]ym

eS

T
5

eS

T S ]S

]ym
2

1

T

]T

]ymD ~2.28!

and that the last term in Eq.~2.28! can be neglected com
pared with the preceding one~since entropyS is proportional
to a large number of fast degrees of freedom, 2n, while
temperatureT does not depend onn), one finds from Eqs.
~2.27! and ~2.28! the drift

Vm52vmnT
]S

]yn
1Dmn

]S

]yn
. ~2.29!

The corresponding equations describing the evolution of
system to equilibrium are

dym

dt
52vmnT

]S~E,y!

]yn
1Dmn~y!

]S~E,y!

]yn
. ~2.30!

Equations~2.30! augmented by the definition of temperatu

1

T
5

]S~E,y!

]E
~2.31!

form a closed system of equations.
The system of Equations~2.30! has quite a special form

It involves two ‘‘entries’’: equilibrium entropyS(E,y), and a
symmetric tensor of diffusion coefficients,Dmn(y). To
specify the system, one has to prescribe functionsS(E,y)
and Dmn(y). The symmetry of tensorDmn is caused by
Markov’s nature of the process. Onsager’s relations are
den in the assumption on Markov’s character of the proc
and the probability flux hypothesis.

Note that temperatureT is small compared to the tota
energy of the systemE:T;E/n, the total energy being con
sidered finite. Entropy is proportional ton. Therefore, for
06612
e

d-
ss

largen, the first term on the right-hand side of Eq.~2.30! is
finite. The second term is in the order of the first one ifDmn

are small,

Dmn;T. ~2.32!

Various components ofDmn have different dimensions, and
in a particular problem,~2.32! is to be rectified depending o
the physical meaning of coordinatesy.

F. Effective Hamiltonian

Let the Hamiltonian of the system have the form

H~x,y!5H~y!1H0~x,y!.

Denote byS0 the entropy of the ‘‘fast’’ Hamiltonian system
with Hamiltonian H0(x,y) and fixed values ofy. Motion
occurs on the energy surfacesH0(x,y)5U5const. Entropy
S0 is a function ofU andy, S05S0(U,y). It is easy to find
that entropy of the system with HamiltonianH(x,y),S(E,y),
is ~see, e.g.@10,18#!

S~E,y!5S0„E2H0~y!,y…, ~2.33!

E being the total energy of the system.
For a fixed valueS of function S0(U,y), U is a function

of y andS determined from the equation

S0~U,y!5S. ~2.34!

Denote this function byU(S,y). It obeys the identity

S0„U~S,y!,y…5S for any S andy. ~2.35!

Differentiating Eq.~2.35! with respect toS andy, we have

]S0~U,y!

]U

]U~S,y!

]S
51,

]S0~U,y!

]U

]U~S,y!

]ym
1

]S0~U,y!

]ym
50. ~2.36!

If one setsU in Eq. ~2.34! to be equal toE2H0(y), thenS
coincides with the total entropy. Since, from Eq.~2.33!,

]S0

]U U
U5E2H0(y)

5
]S

]E
5

1

T
,

Eqs.~2.36! take the form

]U~S,y!

]S
5T,

]U~S,y!

]ym
52T

]S0~U,y!

]ym U
U5E2H0(y)

. ~2.37!

We define the effective HamiltonianHeff(S,y) by the for-
mula

Heff~S,y!5H0~y!1U~S,y!. ~2.38!
6-7
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For derivative of the effective Hamiltonian with respect toy
at a fixed value of entropy, we have from Eqs.~2.33!, ~2.37!,
and ~2.38!

]Heff~S,y!

]ym
5

]H0~y!

]ym
1

]U~S,y!

]ym

5
]H0~y!

]ym
2T

]S0~U,y!

]ym U
U5E2H0(y)

52T
]S0„E2H0~y!,y…

]ym

52T
]S~E,y!

]ym
.

Besides, in accordance with Eq.~2.37!,

]Heff~S,y!

]S
5T.

In terms of derivatives of the effective Hamiltonian, th
evolution equations~2.30! take the form~1.12!. For a given
effective Hamiltonian and given diffusion coefficients, Eq
~1.12! are not closed: they involve an unknown functio
S(t). The additional equation forS(t) can be obtained eithe
from Eq.~2.30! or from the condition that the total energy o
the system,Heff(S,y), is conserved. This yields Eq.~1.14!.
Equations~1.12!–~1.14! form a closed system of equations

We call the form of Eqs.~1.12!–~1.14!, or the equivalent
Eqs. ~2.30!, quasi-Hamiltonian because these equations
come Hamiltonian if the diffusion coefficients are zero.

Deviations from the standard Hamiltonian form a
caused by the dependence of the effective Hamiltonian
entropy, the determination of entropy from the addition
equation ~1.14!, and by the dissipative term
T21Dmn]Heff /]yn in Eq. ~1.12!.

Our next goal is to justify Markov’s character of slo
variables, the probability flux hypothesis~2.26!, and the
quasi-Hamiltonian form of equations for slow variables
asymptotic analysis of Liouville’s equations.

III. ASYMPTOTIC ANALYSIS OF LIOUVILLE’S
EQUATION IN THE CASE OF CANONICAL SLOW

VARIABLES

Consider the Hamiltonian system~2.16! and~2.17!. Vari-
ablesy are assumed to be slow compared to variablesx. We
do not introduce a small time parameter explicitly since
focus only on the first approximation and do not constr
the full asymptotic expansion. We set]H/]xi in the order of
unity and assume that]H/]ym are much smaller than
]H/]xi .

The system of ordinary differential equations~2.16! and
~2.17! is equivalent to the partial differential equation of th
first order, Liouville, equation,
06612
.

e-

n
l

e
t

] f ~ t,x,y!

]t
1v i j

]H~x,y!

]xj

] f ~ t,x,y!

]xi

1vmn
]H~x,y!

]yn

] f ~ t,x,y!

]ym
50. ~3.1!

The equilibrium state of the ergodic Hamiltonian system c
responds to the steady solution

f `~x,y!5
1

GE~E!
d„E2H~x,y!…. ~3.2!

We expect that functionf (t,x,y) tends to function~3.2! as
t→` if initially y have some prescribed valuey0

5(y0
1 , . . . ,y0

m) while x have equilibrium distribution:

f ~0,x,y!5
1

GE~E,y0!
d„E2H~x,y0!…d~y2y0!, ~3.3!

where d(y2y0)[d(y12y0
1)•••d(ym2y0

m) and GE(E,y)
[]G(E,y)/]E. Obviously, the normalization condition fo
probability densityf (t,x,y) is satisfied at the initial instant

E f ~0,x,y!dxdy5
1

GE~E,y0!
E d„E2H~x,y0!…dx

5
1

GE~E,y0!

]

]EE u„E2H~x,y0!…dx

5
1

GE~E,y0!

]

]E
G~E,y0!

51.

We use the abbreviations dx5dx1
•••dxn, dy

5dy1
•••dym. The normalization condition is maintained i

the course of motion since for any solution of Liouville
equation, as follows from Eq.~3.1!,

d

dtE f ~ t,x,y!dxdy50.

Evolution of the initial distribution~3.3! to the equilib-
rium distribution~3.2! should be understood in a weak sen
which mimics a coarse graining. This is a subject for se
rate consideration. We describe here only the formal pro
dure. Note, however, that the convergence off (t,x,y) to
f `(x,y) may take place only for systems with some mixin
properties. This is in contrast to the relations of equilibriu
thermodynamics, which require only ergodicity.

So, our task is to find the asymptotics of the solution
Liouville’s equation~3.1! with initial conditions~3.3! assum-
ing that the last term in Eq.~3.1! is small. In fact, we aim to
find the governing equation for the probability density fun
tion of y variables,

f ~ t,y!5E f ~ t,x,y!dx. ~3.4!
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A general form of such an equation follows from integrati
of Liouville’s equation overx,

] f ~ t,y!

]t
1

]Jm

]ym
50, ~3.5!

where the probability flux is

Jm5vmnE ]H

]yn
f ~ t,x,y!dx. ~3.6!

We use asymptotic reasonings to linkJm and f (t,y).
Due to ergodicity, the Hamiltonian system has the o

integralH(x,y)5E. Thus, it is worthwhile to make a chang
of unknown function in Liouville’s equation,

f ~ t,x,y!5d„E2H~x,y!…F~ t,x,y!. ~3.7!

At the initial instant,F(t,x,y) obeys the condition

F~0,x,y!5
1

GE~E,y0!
d~y2y0!. ~3.8!

Denote byF(t,y) the average value ofF over the energy
surface

F~ t,y!5EF~ t,x,y!d„E2H~x,y!…dxYEd„E2H~x,y!…dx

5
1

GE~E,y!
E F~ t,x,y!d„E2H~x,y!…dx. ~3.9!

Without loss of generality, the functionF(t,x,y) can be pre-
sented in the form

F~ t,x,y!5F~ t,y!1F8~ t,x,y!, ~3.10!

whereF8(t,x,y) satisfy the constraint

E F8~ t,x,y!d„E2H~x,y!…dx50. ~3.11!

FunctionF(t,y) is linked to the probability density func
tion of y variables by a simple relation following from Eq
~3.7! and ~3.9!,

f ~ t,y!5F~ t,y!GE~E,y!. ~3.12!

Let us show that, in terms off (t,y) andF8, the probability
flux takes a simple form

Jm5vmnK ]H

]ynL f ~ t,y!1vmnE H ,n8 d„E2H~x,y!…F8dx,

~3.13!

where^]H/]ym& are the average values of]H/]ym over the
energy surface andH ,n8 are the fluctuations of]H/]ym,

H ,n8 5
]H

]yn
2K ]H

]ynL . ~3.14!
06612
y

Indeed, in terms ofF(t,y) andF8, the probability flux can
be written as

Jm5vmnE ]H

]yn
d„E2H~x,y!…dxF~ t,y!

1vmnE ]H

]yn
d„E2H~x,y!…F8dx. ~3.15!

Since

E ]H

]yn
d„E2H~x,y!…dx52E ]u„E2H~x,y!…

]yn
dx

52
]

]ynE u„E2H~x,y!…dx

52
]G~E,y!

]yn

52eS
]S~E,y!

]yn
,

we have for the average value of]H/]yn over the energy
surface

K ]H

]ynL 5E ]H

]yn
d„E2H~x,y!…dxY E d„E2H~x,y!)dx

52
]G~E,y!

]yn Y ]G~E,y!

]E

52
]S~E,y!

]yn Y ]S~E,y!

]E
. ~3.16!

Equation~3.13! follows from Eqs.~3.15!, ~3.16!, and~3.14!.
If we find F8 in terms of the probability density of slow

variablesf (t,y) and, using Eq.~3.13!, expressJm in terms of
f (t,y), Eq. ~3.5! will control the evolution off (t,y).

To find F8, we assume thatF8 is small compared with
F(t,y) and we use Liouville’s equation to determineF8.
Then we will check thatF8 obtained from this assumption i
small indeed.

To write Liouville’s equation in terms of functionF8,
first we have to eliminate the degeneracy contained in
mula ~3.7!: for given f (t,x,y), functionF(t,x,y) may con-
tain an arbitrary dependence ofH(x,y) which is nulled by
the factor d„E2H(x,y)…. To do that, we introduce in
x-phase space some curvilinear coordinatesza(x), a
51, . . . ,2n21, andh5H(x,y). Note that functionsza(x)
do not depend ony. Dynamics inza variables is governed by
the equations

dza

dt
5va~z,y!, va[

]za~x!

]xi
v i j

]H~x,y!

]xj
.

6-9
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Liouville’s equation for function f (t,z,h,y) takes the
form

] f ~ t,z,h,y!

]t
1va

] f

]za
1vmn

]H

]yn

] f

]yn
50. ~3.17!

We see that the derivative with respect toh disappeared.
Now we can rectify formula~3.7! requiring that functionF
in (z,h,y) variables does not depend onh,

f ~ t,z,h,y!5d~E2h!F~ t,z,y!. ~3.18!

This establishes a one-to-one correspondence betweenf and
F.

Note thatf (t,z,h,y) is not a probability density ofz and
y: the latter includes the JacobianD(z,h,y) of the transfor-
mation (z,h)→x,

dx5D~z,h,y!dzdh.

Heredz5dz1
•••dz2n21.

Probability density of (z,y) variables isf D. To write Li-
ouville’s equation in terms off D, we note the identities

]

]za
~vaD!50,

]

]ym S vmn
]H

]yn
D D 50. ~3.19!

We have from Eqs.~3.17! and ~3.19!

]

]t
f D1

]

]za
~va f D!1

]

]ya S vmn
]H

]yn
f D D 50. ~3.20!

Plugging Eq.~3.18! in Eq. ~3.20!, we obtain the equation fo
F(t,z,y),

]

]t
F~ t,z,y!D1

]

]za
„vaF~ t,z,y!D…

1
]

]yn S vmn
]H

]yn
F~ t,z,y!D D 50 ~3.21!

and, from Eq.~3.8!, the initial condition

F~0,z,y!5
1

GE~E,y0!
d~y2y0!. ~3.22!

Again, due to identities~3.19!, Eq. ~3.21! can be written
also as

]F~ t,z,y!

]t
1va

]F~ t,z,y!

]za
1vmn

]H

]yn

]F~ t,z,y!

]ym
50.

~3.23!

In terms of z variables, some previous formulas take
simple form,

f ~ t,y!5E F~ t,z,y!Ddz,
06612
K ]H

]ynL 5E ]H

]yn
DdzY E Ddz,

GE~E!5E D~z,E,y!dzdy, GE~E,y!5E D~z,E,y!dz,

Jm5vmnE ]H

]yn
F~ t,z,y!Ddzb f

5vmnE ]H

]yn
DdzF~ t,y!1vmnE ]H

]yn
F8~ t,z,y!Ddz

5vmnK ]H

]ynL f ~ t,y!1vmnE H ,n8 F8~ t,z,y!Ddz. ~3.24!

MeasureD(z,h,y)dz has the sense of the invariant measu
on the energy surfaces inx-phase space.

We seek a solution of Eq.~3.23! of the formF5F(t,y)
1F8(t,z,y). Let us impose onF(t,y) the initial condition

F~ t,y!5
1

GE~E,y0!
d~y2y0!. ~3.25!

ThenF8(t,z,y) is zero at the initial instant,

F8~0,z,y!50. ~3.26!

FunctionF8(t,z,y) satisfies the equation

]F8

]t
1va

]F8

]za
52vmn

]H

]yn

]F~ t,y!

]ym
2

]F~ t,y!

]t

2vmn
]H

]yn

]F8

]yn
. ~3.27!

Let us show that Eq.~3.27! can be written as

]F8

]t
1va

]F8

]za
52vmnH ,n8

]F~ t,y!

]ym
2vmnS ]H

]yn

]F8

]ym

2
1

GE~E,y!

]

]ymE H ,nF8Ddz D . ~3.28!

Indeed, from Eqs.~3.5!, ~3.12!, ~3.13!, and~3.16!,

]F~ t,y!

]t
GE~E,y!1

]

]ym F2vmn
]G~E,y!

]yn
F~ t,y!

1E vmnH ,n8 F8DdzG50. ~3.29!

The second term can be transformed
2vmn]G(E,y)/]yn]F(t,y)/]ym.

Therefore, due to Eq.~3.16!,
6-10
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]F~ t,y!

]t
52vmnK ]H

]ynL ]F~ t,y!

]ym
2

1

GE~E,y!

]

]ym

3E vmnH ,n8 F8Ddz. ~3.30!

Plugging Eq.~3.30! in Eq. ~3.27!, we obtain Eq.~3.28!.
Note that the average value of the right-hand side of

~3.28! over z ~with the weightD) is zero: vanishing of the
integral of the first term follows from a definition ofH ,m8
~3.14! while integral of the last two terms vanishes due to
second Eq.~3.19!,

E vmn
]H

]yn

]F8

]ym
Ddz

2E Ddz

GE~E,y!

]

]ymE vmn
]H

]yn
F8Ddz

5E ]

]ym S vmn
]H

]yn
DF8D dz

2
]

]ymE vmn
]H

]yn
F8Ddz

50.

Let us assume that the last two terms on the right-h
side of Eq.~3.28! are much smaller than the first one. Th
we arrive at the initial value problem

]F8

]t
1va

]F8

]za
52vmnH ,n8

]F~ t,y!

]ym
, F8~0,z,y!50.

~3.31!

We will find F8 from this problem and then, in Appendix B
check under which conditions such simplification mak
sense.

To write the solution of Eq.~3.31! in an explicit form, we
introduce a system of ordinary differential equations,

dza

dt
5va~z,y!. ~3.32!

This system determines the mapping of values ofz at some
instantt8,z8 to the values at instantt,

z5x~ t;t8,z8;y!,
]x~ t;t8,z8;y!

]t
5va~x,y!. ~3.33!

The last argument in Eqs.~3.33! emphasizes the depen
dence of the mapping on parametersy. In Eq. ~3.33!, t8 may
be either less than or greater thant. In the latter case, the
mapping is determined by the differential equations~3.33!
with the final condition

x~ t;t8,z8;y!→z8 if t→t820.

The solution of the problem~3.31! can be written in terms
of mapping~3.33! as
06612
.

e

d

s

F8~ t,z,y!52E
0

t

vmnH ,n8 „x~ t8;t,z;y!,y…
]F~ t8,y!

]ym
dt8.

~3.34!

Plugging Eq.~3.34! in Eq. ~3.24!, we find the probability flux

Jm5vmnK ]H

]ynL f ~ t,y!

2vmkE H ,k8 ~z,y!vnlH ,l8 ~x~ t̃ ;t,z;y!y!

3
]F~ t̃ ,y!

]yn
d t̃Ddz

5vmnK ]H

]ynL f ~ t,y!2E
0

t

Kmn~ t̃ ,t;y!
]F~ t̃ ,y!

]yn
GE~E,y!d t̃,

~3.35!

where

Kmn~ t̃ ,t;y!

5vmkvnlE H ,k8 ~z,y!H ,l8 „x~ t̃ ;t,z;y!,y…
D~z,y!dz

GE~E,y!

~3.36!

or

Jm5vmnK ]H

]ynL f ~ t,y!1E
0

t

Kmn~ t̃ ,t;y! f ~ t̃ ,y!d t̃
] ln GE

]yn

2E
0

t

Kmn~ t̃ ,t;y!
] f ~ t̃ ,y!

]yn
d t̃. ~3.37!

Note thatKmn( t̃ ,t;y) are defined both fort̃ .t and t̃ ,t. If
Kmn( t̃ ,t;y) decay ast2 t̃ increases so fast thatKmn'0 for
t2 t̃ .t, t is the correlation time, andf (t,y) do not change
appreciably on the times of ordert, then

Jm5S vmnK ]H

]ynL 1Dmn
] ln GE~E,y!

]yn D f ~ t,y!

2Dmn~y!
] f ~ t,y!

]yn
, ~3.38!

where

Dmn~y!5E
0

t

Kmn~ t̃ ,t;y!d t̃5E
2`

t

Kmn~ t̃ ,t;y!d t̃.

~3.39!

Since]H/]yn52T]S/]yn and
6-11
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] ln GE~E,y!

]yn
5

1

GE

]2eS

]E]yn

5e2S
1

SE

]

]yn
~eSSE!

5
1

SE
S S,nSE1

]

]yn
SED

5
]S

]yn
2

1

T

]T

]yn
,

the probability flux ~3.38! coincides with Eqs.~2.25! and
~2.29! if one identifiesDmn in Eqs.~2.25! and~2.29! with the
tensor~3.39!. The latter can be done if tensorDmn ~3.39! is
symmetric and positive. Symmetry features of tensorDmn

are considered in the next section.

IV. SYMMETRY OF DIFFUSION COEFFICIENTS AND
REVERSIBILITY OF MOTION

Consider mapping Eq.~3.33! in more detail. First, since
Eqs. ~3.32! are autonomous, mapping depends only on
differencet5t2t8, and

z5x~t,z8!. ~4.1!

For brevity, we drop the dependence of all functions
parametersy in the formulas of this section; it can be re
stored in the final relations.

Time shiftt in Eq. ~4.1! can be positive and negative. Th
inverse mapping is

z85x~2t,z!. ~4.2!

TensorKmn ~3.36! depends ont5 t̃ 2t. It enters in all
relations at negative values oft( t̃ ,t). Nevertheless, it is
convenient to consider formula~3.36! as the definition of
Kmn for positive values oft as well. Then the following
property ofKmn holds:

Kmn~t!5Knm~2t!. ~4.3!

Indeed,

Kmn~t!5vmkvnlE H ,k8 ~z!H ,l8 „x~t,z!…
D~z!dz

GE
.

~4.4!

Let us change the variable of integrationz by z85x(t,z).
Due to Eq.~3.19!, measureD(z)dz is conserved by the flow
~3.32!, therefore

D~z!dz5D~z8!dz8.

Using also thatz5x(2t,z8), we have
06612
e

n

Kmn~t!

5vmkvnlE H ,k8 „x(2t,z8)…H ,l~z8!
D~z8!dz8

GE
. ~4.5!

The right-hand side of Eq.~4.5! is Knm(2t), as claimed.
Additional symmetry properties may be warranted if m

cromotion is reversible. That means the following. Denote
(p,q) the generalized momenta and coordinates of microm
tion, x5(p,q), and byx* the pointx* 5(2p,q). If

H~x,y!5H~x* ,y! ~4.6!

and the phase flow moves a pointx to the pointx1, then, as
is easy to check, for the same time interval it moves also
point x1* to the pointx* . In terms of mapping~4.1!, it can be
written as

z15x~t,z! ⇒ z* 5x~t,z1* ! or z1* 5x~2t,z* ! or

x* ~t,z!5x~2t,z* !, ~4.7!

wherez andz1 arez coordinates of the pointsx andx1.
This property yields the symmetry of tensorKmn(t):

Kmn~t!5Knm~t!. ~4.8!

Indeed, from Eq.~4.6!, ]H/]ymuz5]H/]ymuz* . Choosing
also coordinatesz in such a way thatD(z)dz5D(z* )dz* ,
we have

Kmn~t!5vmkvnlE H ,k8 ~z!H ,l8 „x~t,z!…
D~z!dz

GE

5vmkvnlE H ,k8 ~z!H ,l8 ~x* ~t,z!!
D~z!dz

GE

5vmkvnlE H ,k8 ~z!H ,l8 „x~2t,z* !…
D~z!dz

GE

5vmkvnlE H ,k8 ~z* !H ,l8 „x~2t,z* !…
D~z* !dz*

GE

5Kmn~2t!. ~4.9!

Formula~4.8! follows from Eqs.~4.9! and ~4.3!. In con-
trast to Eq.~4.8!, formula ~4.3! is universal, it does not de
pend on the symmetry properties of the Hamiltonian.

In the presence of magnetic field,m, relation ~4.6! must
be modified,

H~x,y,m!5H~x* ,y,2m!, ~4.10!

and, as is easy to check, Eq.~4.9! is replaced by

Kmn~t,m!5Kmn~2t,2m!. ~4.11!

Thus, from Eqs.~4.11! and ~4.3!, we have

Kmn~t,m!5Knm~t,Àm!. ~4.12!
6-12
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Symmetry ofKmn yields the symmetry of the diffusion co
efficients.

V. DYNAMICS OF SLOW VARIABLES AS A MARKOV
PROCESS

Approximation of the probability flux~3.37! by the ex-
pression~3.38! yields the equation for probability density o
y variables,f (t,y),

] f ~ t,y!

]t
1

]

]ym F S 2vmnT
]S

]yn
1Dmn

]S

]ynD f ~ t,y!

2Dmn
] f ~ t,y!

]yn G50. ~5.1!

If Dmn is a positive symmetric tensor, then Eq.~5.1! may
be interpreted as a Fokker-Planck equation for a Mar
processy(t).

If Dmn are not symmetric, as may be the case in the p
ence of magnetic field, such an interpretation of Eq.~5.1!
fails. However, one can make the following transformatio
let us presentDmn as a sum of its symmetric part,D (mn), and
its antisymmetric part,D [mn] ,

Dmn5D (mn)1D [mn] , ~D (mn)5D (nm), D [mn]52D [nm] !,

and use the identity

]

]ym S D [mn]
] f ~ t,y!

]yn D 5
]D [mn]

]ym

] f ~ t,y!

]yn

5
]

]yn S ]D [mn]

]ym
f ~ t,y!D .

Then Eq.~5.1! can be written in the form

] f ~ t,y!

]t
1

]

]ym F S 2vmnT
]S

]yn
1Dmn

]S

]yn
2

]D [mn]

]yn D
3 f ~ t,y!2D (mn)

] f ~ t,y!

]yn G50. ~5.2!

We see thaty variables can be interpreted as a Markov p
cess with the coefficientsD (mn) and the drift

Vm52vmnT
]S

]yn
1Dmn

]S

]yn
2

]D [mn]

]yn
. ~5.3!

The difference from the case of symmetric diffusion coe
cients is in the second term, where the nonsymmetric co
cients stand, and in the additional third term. Since diffus
coefficientsDmn are in the order ofT, andS is proportional
to the number of degrees of freedom, the contribution of
third term in Eq.~5.3! is small unless the derivative ofD [mn]

with respect toy brings a large factor. For example, on
cannot rule out a dependenceD [mn] on y of the form
06612
v

s-

:

-

-
fi-
n

e

consteS(y). In the typical cases when derivatives ofDmn are
in the order ofDmn, the third term can be neglected.

VI. CONSTITUTIVE EQUATIONS FOR SOLIDS

In this section, we use the quasi-Hamiltonian structure
macroequations to establish a general form of the cons
tive equations for solids. We are going to show that,
stressess5(s i j ), i , j 51,2,3, depend on strains«5(« i j )
and strain rates«̇5( «̇ i j ) only, then the general form of suc
a dependence is

s i j 52T
]h~U,« i j !

]« i j
1

1

T
Di jkl ~T,«,«̇ !«̇kl , ~6.1!

where h(U,«) is the equilibrium entropy per unit volum
and the viscosity tensor,Di jkl has the symmetry of elasti
moduli tensor,

Di jkl 5D jikl 5Di jlk 5Dkli j . ~6.2!

The dissipative part of the constitutive equations is ob
ously not potential. Consider, for example, the case of i
tropic body,

Di jkl «̇kl5A~«,«̇ !d i j «̇k
k1B~«,«̇ !«̇ i j .

Let us assume that the coefficientsA,B depend only on the
first two invariants of the strain rate tensor:e15 «̇k

k and e2

5 1
2 «̇ i j «̇

i j . Then one can easily check that potentiality tak
place if and only if

]

]e2
~e1A!5

]B

]e1
.

No reasons are seen why this condition might be satisfie
the general case.

To obtain Eqs.~6.1! and ~6.2!, consider a piece of solid
deformed homogeneously. At the boundary of this piece
stressess i j are applied. Microscopically this means th
there is a force acting on the boundary particles of the fo
s i j nja, wheres i j are constants depending on time,nj are
the components of the unit normal vector to the bounda
anda is the surface area per one particle. The Hamilton
of the system has the form

H5H~x!2a (
aP]V

s i j njqi (a) , ~6.3!

whereqi (a) are the coordinates of theath particle and]V is
the boundary ofV. We define the strain tensor as

« i j 5
a

uVu (
aP]V

1

2
~njqi (a)1niqj (a)!, ~6.4!

whereuVu is the specimen volume.
One can make a change of variables in the Hamilton

system choosing the components of the strain tensor~6.4! as
some of the coordinates of the system. Denote the co
sponding momenta byPi j . We assume that« i j and Pi j are
6-13
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the only slow coordinates of the system and denote all o
coordinates byx. The Hamiltonian can be written in the form

H5
1

2
I i jkl P

i j Pkl1H0~x,«!2s i j « i j uVu. ~6.5!

If uVu→0, the momenta and the coefficientsI i jkl have the
orders Pi j ;«̇ i j uVuuVu2/3, I i jkl ;uVu25/3. The possibility of
separating the inertia of homogeneous deformation may
established, for example, by Kunin’s quasicontinuum te
nique @19#. Denote byS0(U,«) the entropy of the system
with HamiltonianH0(x,«) and the value of energyU, and by
h the entropy per unit volume,S0 /uVu5h(U/uVu,«). Then
the entropy of the system under consideration is

S5uVuhS uVu21E2
1

2
uVu21I i jkl P

i j Pkl1s i j « i j ,« i j D .

~6.6!

Equations~2.30! take the form

«̇ i j 5I i jkl P
kl,

Ṗi j 52S s i j 1T
]h

]« i j
D uVu1

1

T
Di jkl I klmnP

mn. ~6.7!

For uVu→0 and«̇ i j finite, Pi j ;uVu5/3 and the left-hand side
of Eq. ~6.7! can be neglected. Then Eq.~6.7! transforms to
Eq. ~6.1!. Symmetry properties ofDi jkl follow from the sym-
metry properties ofDmn in Eq. ~2.30!.

VII. HEAT CONDUCTIVITY

The simplest example of a noncanonical variable is
ergy. Energy appears as an additional slow variable if
considers an interaction of a number of systems. Total en
is conserved while energy of each subsystem changes sl
due to ‘‘heat~energy! transfer’’ between the subsystems. W
are going to derive in this section the equations of nonlin
heat conduction. This involves, in addition to the asympto
analysis of Liouville’s equation, a limit transition from a fi
nite number of subsystems to continuum. The resulting eq
tions are as follows.

Let j5(j1,j2,j3)5(jm), m51,2,3 be a point of three
dimensional continuum, andU(t,j) and h(U,j) be energy
and entropy densities per unit volume, respectively. The s
tem is isolated. Let the system be deviated from the equ
rium state initially. Then the evolution to equilibrium is gov
erned by the equations

]U

]t
52

]qm

]jm
, ~7.1!

qm5E Dmn~j,j8!
]

]j8n

1

T~ t,j8!
d3j8,

1

T
5

]h~U,j!

]U
, ~7.2!
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whereDmn is a symmetric positive kernel

Dmn~j,j8!5Dnm~j8,j!, ~7.3!

E Dmn~j,j8!wm~j!wn~j8!d3jd3j8>0 ~7.4!

for any wm(j).
The kernel might be a functional of the temperature fie

In the case of local dependence of heat fluxqm only on
temperature and temperature gradient,

qm5Dmn~j,T,,T!
]

]jn

1

T
~7.5!

with a symmetric positive tensorDmn(j,T,,T).
Derivation of Eqs.~7.1!–~7.5! involves a number of as

sumptions formulated below as some necessary notation
introduced.

A. Hamiltonian system

Let us haveN subsystems and letxa be generalized mo-
menta and coordinates of theath subsystem, a
51, . . . ,N; xa5(xa

1 , . . . ,xa
2n). The dimension ofxa-phase

space may change from one subsystem to another, but w
not emphasize this in the notation. There is no mass
change between subsystems, and each subsystem cons
the same particles all the time. The Hamiltonian of the s
tem is taken in the form

H5 (
a51

N

Ha~xa!1H̃~x1 , . . . ,xN!, ~7.6!

where Ha(xa) is the Hamiltonian of the isolatedath sub-
system andH̃(x1 , . . . ,xN) is the interaction Hamiltonian
The sense in the partition of the Hamiltonian into the su
~7.6! is introduced by the assumption

H̃~x1 , . . . ,xN!! (
a51

N

Ha~xa!. ~7.7!

Again, though we are going to use some asymptotic reas
ing, we do not need to introduce a formal small parame
via Eq.~7.7! since we are interested only in the leading ter
of the asymptotic expansion.

We assume that each subsystem is ergodic on the en
surfacesHa(xa)5const, and the entire system with Ham
tonian ~7.6! is also ergodic on the energy surfac
H(x1 , . . . ,xN)5E5const in (x1 , . . . ,xN)-phase space. We
are going to study the dynamics of slow variablesha
5Ha(xa).
6-14
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B. Equilibrium distribution

In thermodynamical equilibrium, the probability densi
of variablesh5(h1 , . . . ,hN), f `(h), is given by the for-
mula ~see, e.g.,@10#, Section 2.2!

f `~h!5
1

GE~E!
GEh ,

GEh[
]

]E]h1•••]hN
G~E,h!, ~7.8!

where

G~E,h!5E u„E2H~x!…u„h12H1~x1!…•••u

3„hN2HN~xN!…dx1•••dxN ~7.9!

and

G~E!5E u„E2H~x!…dx1•••dxN .

Obviously,

GEh5E dS E2 (
a51

N

Ha2H̃ D d„h12H1~x1!…•••

d„hN2HN~xN!…dx1•••dxN . ~7.10!

Denote byGa(ha) the phase volume of theath subsystem,

Ga~ha!5E u„ha2Ha~xa!…dxa ,

and bySa(ha) its entropy

Sa~ha!5 ln Ga~ha!. ~7.11!

Assume that the number of degrees of freedom in each
system is huge. Then the formula for entropy~7.11! is
asymptotically equivalent to the formula

Sa~ha!5 ln
dGa~ha!

dha
.

Neglecting the interaction energyH̃ compared to(a51
N Ha in

Eq. ~7.10!, we obtain

GEh5dS E2 (
a51

N

haD dG1

dh1
•••

dGN

dhN

5dS E2 (
a51

N

haD eS1(h1)1•••1SN(hN) ~7.12!

and, for probability density,

f `~h!5
1

GE~E!
dS E2 (

a51

N

haD eS(h1)1•••1SN(hN).

~7.13!
06612
b-

We see from Eq.~7.13! that the most probable state corr
sponds to the maximum value of total entropyS1(h1)1•••

1SN(hN), under the condition that the total energy is fixe
(a51

N ha5E ~cf. @20#!. This is obviously the state with equa
temperatures of the subsystems,Ta5@dSa(ha)/dha#21.

In what follows, we need a more precice formula than E
~7.12! in which thed function is replaced by a more exa
expression. Namely, let us show that

GEh5consteS1(h1)1•••1SN(hN)2(E2h12•••2hN)2/2«2

~7.14!

with some small constant« depending on interaction energ
Indeed, using the Fourier presentation of thed function,

d~E!5
1

2pE2`

1`

eiEzdz,

one can write Eq.~7.10! as

GEh5
1

2p È
1`

eiz(E2(ha)e2 izH̃

3 )
a51

N

d„ha2Ha~xa!…dx1•••dxN . ~7.15!

Keeping in the expansion of exp(2izH̃),

e2 izH̃512 izH̃2
z2

2
H̃21•••,

only the first three terms, we get

GEh5
1

2pE2`

1`

eiz(E2(ha)2 izA2(z2/2)«2
dz

dG1

dh1
•••

dGN

dhN
,

~7.16!

where we introduced the notations

A5E H̃d~h12H1!•••d~hN2HN!dx1•••dxN ,

«25E H̃2d~h12H1!•••d~hN2HN!dx1•••dxN2A2.

From Eq.~7.16!, computing the integral overz, we obtain

GEh5conste2(E2(ha2A)2/2«2 dG1

dh1
•••

dGN

dhN
. ~7.17!

NeglectingA compared to(ha , we arrive at Eq.~7.14!.
An interesting consequence of Eq.~7.14! is that~for con-

stant«) the most probable state satisfies the equations

]Sa

]ha
1

E2h12•••2hN

«2
50.

Therefore, at the point of equilibrium,E2h12•••2hN is a
small negative constant,
6-15
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E2h12•••2hN52
«2

T
. ~7.18!

C. Evolution to equilibrium

First, we are going to show that evolution to equilibriu
is described by a system of ordinary differential equation

dha

dt
5Dab

]Sb

]hb
, ~7.19!

whereDab are some functions on energies of all subsyste
which obey the conditions

Dab5Dba , (
b

Dab50. ~7.20!

The physical properties of the system are described by e
librium entropies of subsystemsSb(hb). The total energy of
the systemh11•••1hN is constant in the process of evolu
tion as follows from Eqs.~7.19! and~7.20!. The total entropy
S5S1(h1)1•••1SN(hN) changes in accordance with th
equation

dS

dt
5Dba

]Sa

]ha

]Sb

]hb
5Dab

]S

]ha

]S

]hb
. ~7.21!

Positivity of the quadratic form

Dab

]S

]ha

]S

]hb
>0 ~7.22!

warrants the growth of entropy.
Evolution equations~7.19! do not have a Hamiltonian

part; they are pure dissipative.

D. Cauchy’s problem for Liouville’s equation

The dynamics of the system is described by Liouville
equation for probability densityf (t,x),

] f ~ t,x!

]t
1v i j

]H

]xa
j

] f ~ t,x!

]xa
i

50. ~7.23!

We need to introduce explicitly the slow variablesha
5Ha(xa). To this end, we choose some curvilinear coor
natesza5(za

a), a51, . . . ,2n21, on the surfacesHa(xa)
5ha5const in thexa-phase spaces and write Liouville
equation in coordinatesz5(z1 , . . . ,zN), h5(h1 , . . . ,hN),

] f ~ t,z,h!

]t
1va

a] f ~ t,z,h!

]za
a

1va

] f ~ t,z,h!

]ha
50. ~7.24!

Here the following notations are used:

va
a[

]za
a

]xa
i

v i j
]H

]xa
j

5va
a~z,h!,
06612
s

i-
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va[
]Ha

]xa
i

v i j
]H

]xa
j

5va~z,h!. ~7.25!

Denote by Da the Jacobian of transformationxa
→(za ,ha),

dxa5Da~za ,ha!dzadha ,

and by theD the product of Jacobians,

D5D1D2•••DN .

The function f (t,z,h)D(z,h) is the probability distribution
of variablesz andh at the instantt.

Initially let f (t,z,h) have the value

f ~0,z,h!5cd~E2H~x~z,h!!!

3d~ h̊12h1!•••d~ h̊N2hN!. ~7.26!

The constantc is determined from the normalization cond
tion

E f ~0,z,h!Ddzdh51. ~7.27!

Our task is to study the solution of Liouville’s equation wi
the initial data~7.26!. We expect that probability density ofh
variables evolves to the function~7.13! @or, more precisely,
~7.14!#, while probability density ofz andh approaches the
function

f ~`,z,h!5c`d~E2H„x~z,h!…!. ~7.28!

E. Liouville’s equation and evolution equations„7.19…

First, let us obtain the equation for the probability fun
tion of variablesh,

f ~ t,h!5E f ~ t,z,h!Ddz. ~7.29!

Note the identity

]~va
aD!

]za
a

1
]~vaD!

]ha
50. ~7.30!

According to Eq.~7.30!, Liouville’s equation~7.24! can be
written also in the divergence form,

] f ~ t,z,h!D

]t
1

]~va
a f ~ t,z,h!D!

]za
a

1
]„vaf ~ t,z,h!D…

]ha
50.

~7.31!

Integrating Eq.~7.28! over z, we find
6-16
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] f ~ t,h!

]t
1

]Ja

]ha
50,

Ja5E vaf ~ t,z,h!Ddz. ~7.32!

Our goal is to show that the probability fluxJa in Eq. ~7.32!
in the first approximation has the form

Ja5Dab

]Sb

]hb
f ~ t,h!2Dab

] f ~ t,h!

]hb
. ~7.33!

Then the evolution equations~7.19! follow from Eqs.~7.32!
and ~7.33! and the smallness of the diffusion coefficien
Dab . Note that the probability flux vanishes at equilibrium
Therefore, Eq.~7.33! can be obtained also from reversibilit
of micromotion and the hypothesis on Markov’s character
approaching to equilibrium.

F. Solution of Liouville’s equation in the first approximation

We seek a solution of Liouville’s equation~7.24! which
corresponds to the state of local equilibrium: in the first a
proximation,

f ~ t,z,h!5d~E2H„x~z,h!…!F~ t,h!, ~7.34!

i.e., for given h, z are distributed over energy surface
accordance with ‘‘the ergodic thermodynamic equilibrium
Therefore, we seek a solution of Liouville’s equation in t
form

f ~ t,z,h!5d~E2H„x~z,h!…!

3@F~ t,h!1F8~ t,z,h!#, ~7.35!

whereF8!F. Plugging Eq.~7.35! into Eq. ~7.24!, we have

]F8

]t
1va

a]F8

]za
a

52va

]F

]ha
2

]F̄

]t
2va

]F8

]ha
. ~7.36!

Note that coefficientsva of Liouville’s equation~7.24! are
much smaller than coefficientsva

a : this corresponds to a
slow change of energiesha . The further analysis is quite
similar to that of Sec. III. We set up for the functionF the
initial data

F~0,h!5c0d~h2h0!. ~7.37!

Then

F8~0,z,h!50. ~7.38!

Without loss of generality, we may impose the constraint

E d~E2H !F8~ t,z,h!Ddz50, ~7.39!

redefining, if necessary, functionF(t,h).
06612
f
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We drop the last two terms on the right-hand side of E
~7.36! and find F8 explicitly in terms of solutions of the
system of ordinary differential equations

dza
a~ t,z!

dt
5va

a~ t,z,h!.

The system defines the mapping

z5x~ t;t8,z8;h!

of the pointsz8 at the instantt8 to the pointsz at the instant
t.

We have

F8~ t,z,h!52E
0

t

va~x~ t8;t,z;h!,h!
]F~ t8,h!

]ha
dt8.

~7.40!

From Eqs.~7.35! and ~7.32!,

Ja5E vaD f ~ t,z,h!dz5E va~z,h!d~E2H !DdzF~ t,h!

2E
0

tE va~z,h!va~x~ t8;t,z;h!,h!
]F~ t8,h!

]hb
dt8

3d~E2H !Ddz. ~7.41!

Let us show that the first term on the right-hand side of E
~7.41! is zero. Indeed, according to Eq.~7.25!, we have

E vad~E2H !Ddz

5E ]Ha

]xa
i

v i j
]H

]xa
j
d~E2H !d~h12H1!•••d~hN2HN!

3dx1•••dxN

5E ]u~ha2Ha!

]xa
i

v i j
]u~E2H !

]xa
j

3 )
bÞa

d~hb2Hb!dx1•••dxN

5E ]

]xa
j S ]u~ha2Ha!

]xa
i

v i j u~E2H !D
3 )

bÞa
d~hb2Hb!dx1•••dxN50 ~7.42!

Here we used the divergence theorem and the fact thatu(E
2H) is equal to zero for sufficiently largex due to the com-
pactness of the surfaceH5E.

Equation~7.42! means that the average value ofva over
the energy surface in any local equilibrium is zero. This
why the Hamiltonian part does not appear in the evolut
equations~7.19!.
6-17
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So, va has a character of fluctuations. As before, we
troduce the correlation tensor

Kab~ t,t8;h!5E va~z,h!vb~x~ t8;t,z!,h!d~E2H !

3Ddz/GEh . ~7.43!

For t8<t, Kab depend only on the differencet2t8. We as-
sume thatKabÞ0 only for ut82tu<t, and that]F/]hb do
not change considerably on the time intervals in the orde
the correlation timet. Then

Ja52Dab~h!
]F

]hb
GEh , ~7.44!

where

Dab~h!5E
2`

t

Kab~ t2t8,h!dt.

The first constraint onDab ~7.20! follows from reversibility
of motion in the same way as in Sec. IV. The second c
straint ~7.20! holds due to conservation of total energy.

Now note that the probability distribution ofh, f (t,h), is
linked to F(t,h), according to Eqs.~7.29!, ~7.35!, and
~7.10!, by the relation

f ~ t,h!5F~ t,h!GEh . ~7.45!

From Eqs.~7.44! and ~7.45!,

Ja52Dab

] f ~ t,h!

]hb
1Dab

] ln GEh

]hb
. ~7.46!

Equation~7.19! follows from Eqs.~7.46!, ~7.14!, and~7.20!
and the smallness of the diffusion coefficients. The mag
tude of the neglected terms in Eq.~7.36! may be estimated in
the same way as for the canonical variables in Appendix

G. Transition to continuum

Let the subsystems be small pieces of some body.
identify the number of the piece,a, with the coordinates of
the center of that piece,j. Evolution to equilibrium is de-
scribed by the fieldU(t,j) while h(t,j)5U(t,j)d3j, S
5hd3j, and Dab becomes a function of two variable
D(j,j8). The functionD(j,j8) is, in fact, a functional of the
field h(t,j) @or, equivalently,T(t,j)] but we do not empha-
size this in the notation. We assume thatD(j,j8)
5D̂(j,j8)d3jd3j8. Then Eq.~7.19! transforms to the equa
tion

]U~ t,j!

]t
5E D̂~j,j8!

1

T~ t,j8!
d3j8. ~7.47!

The second law requires positiveness of the kernel: for
function w(j),
06612
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E D̂~j,j8!w~j!w~j8!d3jd3j8>0. ~7.48!

Conditions~7.20! take the form

D̂~j,j8!5D̂~j8,j!, E D̂~j,j8!d3j850. ~7.49!

For simplicity, we assume the body is unbounded. The
fore, the integrals in Eqs.~7.47!–~7.49! are taken over the
entire three-dimensional space. Interactions of remote p
of the body decay with distance, andD̂(j,j8)→0 as uj
2j8u→`. The rate of decay is assumed to be fast enou
for the convergence of all integrals involved.

We are going to show now that the kernel has the form

D̂~j,j8!5
]2

]jm]j8n
Dmn~j,j8!, ~7.50!

whereDmn(j,j8) have the symmetry

Dmn~j,j8!5Dnm~j8,j!. ~7.51!

Indeed, consider the Fourier transform of the kernel

D~k,k8!5E D̂~j,j8!ei (kj1k8j8)d3jd3j8. ~7.52!

According to the first relation~7.49!, D(k,k8) is a symmetric
function

D~k,k8!5D~k8,k!. ~7.53!

Puttingk850 in Eq.~7.52!, we find using the second relatio
~7.49!

D~k,0!50. ~7.54!

Due to the symmetry ofD(k,k8), we have also

D~0,k8!50. ~7.55!

Assume thatD(k,k8) is an analytic function ofk andk8 at
the pointk5k850. Then, from Eq.~7.55!, D(k,k8) can al-
ways be presented in the form

D~k,k8!5kmDm~k,k8!,

where Dm(k,k8) are some analytic functions ofk and k8
~see, for example, the lemma in the proof of Morse’s the
rem @21#!. According to Eq.~7.54!, Dm(k,0)50. For the
same reason,Dm(k,k8) can be presented in the form
Dm(k,k8)5Dmn(k,k8)kn8 and

D~k,k8!5Dmn~k,k8!kmkn8 ~7.56!

with the symmetryDmn(k,k8)5Dnm(k8,k).
Plugging Eq.~7.56! in Eq. ~7.52! and performing the in-

versed Fourier transform, we arrive at Eqs.~7.50! and~7.51!,
where Dmn(j,j8) is the inverse Fourier transform o
6-18
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2Dmn(k,k8). Equation~7.2! follows from Eqs.~7.47! and
~7.50!. Equation~7.3! is a consequence of Eq.~7.2! and the
locality condition.

H. Other nonlinear effects in continua

The above analysis can be extended to include visco
and other nonlinear effects in continua in the case when th
is no mass exchange between the continuum particles~sub-
systems!. The corresponding analysis is cumbersome, ho
ever, because the additional integrals of motion, moment
and momentum momentum, must be taken into account.
final equations are similar to the usual equations of c
tinuum media@3,22# in which Onsager’s relations must b
understood in their nonlinear form~1.10! and ~1.11!. Con-
sider as an example the following nonlinear phenomenon
nonlinear elastic body entropy, density is a function of int
nal energyU and Lagrangian coordinates of the strain tens
«ab , a,b51,2,3. In many cases, one can accept that

h~U,«ab!5h0~U !2
1

2
Cabcd~U !«ab«cd ,

where h0(U) determines the heat capacity of the body
zero strains. FunctionsCabcd(U) describe the dependence
Young’s moduli on temperature. Temperature is determi
by the equation

1

T
5

]h~U,«ab!

]U
5

dh0~U !

dU
2

1

2

dCabcd~U !

dU
«ab«cd.

~7.57!

The last term in Eq.~7.57! shows that the dependence
Young’s moduli on temperature causes a reciprocal influe
of strains on temperature. This is a pure equilibrium effe
The nonlinear heat conduction equation~7.5! means that the
heat flux depends on the gradient of temperature~7.57!,
which must include the gradient of strains@the gradient of
the last term in Eq.~7.57!#. Being neglected in linear hea
conductivity, the dependence of heat flux on strain grad
might be important for some materials.

VIII. MOTION OF DEFECTS IN A CRYSTAL LATTICE

Probability flux in heat conduction vanishes at equil
rium. There is another interesting case where this occ
motion of defects in a crystal lattice. Consider first a gene
setting when the Hamiltonian system possesses some
variables,Fm, which are functions of canonical variables,x:
Fm5Fm(x). That means that the derivatives

dFm

dt
5

]Fm

]xi
v i j

]H

]xj

are small compared to]H/]xi . Denote the probability ofFm

by f (t,y),

f ~ t,y!5E f ~ t,x!d„y2F~x!…dx,
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where d„y2F(x)…5d(y12F1(x))•••d„ym2Fm(x)….
Function f (t,y) obeys the equation

] f ~ t,y!

]t
1

]Jm

]ym
50,

Jm5E v i j
]H

]xj

]Fm

]xi
d„y2F~x!…f ~ t,x!dx, ~8.1!

which follows from Liouville’s equation and finiteness of th
support of functionf (t,x) @remember that energy surface
H(x)5E are compact#,

] f ~ t,y!

]t
5E ] f ~ t,x!

]t
d~y2F~x!!dx

52E ]

]xi S v i j
]H

]xj
f ~ t,x!D d„y2F~x!…dx

5E v i j
]H

]xj
f ~ t,x!

]

]xi
d„y2F~x!…dx

52E v i j
]H

]xj

]F

]xi
f ~ t,x!d8„y2F~x!…dx

52
]

]ymE v i j
]H

]xj

]F

]xi
f ~ t,x!d„y2F~x!…dx.

Let the motion of the Hamiltonian system with the co
straintsFm(x)5ym be ergodic and mixing on the surface
H(x)5E, Fm(x)5ym. Then one may expect that the a
ymptotics of thef (t,x) has the form

f ~ t,x!5d„E2H~x!…@ f̄ „t,F~x!…1 f 8~ t,x!#

and, from the same chain of reasoning as in Sec. III, one
derive thatym is a Markov process.

Let function Fm(x) depend only on generalized coord
natesq,Fm5Fm(q), and letH(p,q) be an even function of
generalized momentap. Then the probability flux

Jm5E ]H

]p

]Fm~q!

]q
d„y2F~q!…f ~ t,p,q!dpdq ~8.2!

is zero at equilibrium whenf (t,p,q)5cd„E2H(p,q)… since
the integrand in Eq.~8.2! is an odd function ofp. Vanishing
of the probability flux along with Markov’s property dete
mines the drift.

Now we apply this reasoning to the motion of vacanci
Consider a vacancy in an otherwise perfect crystal latt
Vacancy coordinatesr can be viewed as slow variables. Va
cancy coordinates may be thought of as some function
positions of atoms,q. For example, one can definer as a
point where the function(a51

N w(ur 2qau) (a is the atom
number,w is a growing function! reaches its maximum. Fo
Markov’s process of the vacancy diffusion, the probabil
flux is
6-19



si
t

m
tio

k

te

n

-

is
n

o
s

-

s.
c-

uld

t

nd
the

:
o-

de-
e-

if
cal
ed

the

iva-
n.

-

n

V. L. BERDICHEVSKY PHYSICAL REVIEW E68, 066126 ~2003!
Jm5Vm f ~ t,r !2Dmn
] f ~ t,r !

]r n
. ~8.3!

Equilibrium distribution off (t,r ) is

f ~`,r !5ce2H(r )/T, ~8.4!

whereH(r ) is the energy value when the vacancy is po
tioned at the pointr. Since the probability flux vanishes a
equilibrium, we find the drift from Eqs.~8.3! and ~8.4!,

Vm52
Dmn

T

]H~r !

]r n
. ~8.5!

Perhaps similar reasoning can be applied to the slow
tion of dislocations. One may speculate that the disloca
position depends only on the positions of atoms~though to
write down this dependence explicitly is not a simple tas!.
Therefore, the probability flux must be zero.

The dislocation line can be discretized and approxima
by a set of vectors,ra5(r a

i ), i , j 51,2,3,a51, . . . ,N, r
5(r1 , . . . ,rN). Then

Va
i 52(

b

Dab
i j

T

]H

]r b
j
.

Extrapolating the set of vectorsra(t) by a continuum curve
r5r (t,s), we have

Vi~s!52E Di j ~s,s8!

T

dH

dr j~ t,s8!
ds8,

whereH(r (t,s)) is the energy functional of the dislocatio
positionr (t,s), anddH/dr j is its variational derivative. Ob-
viously, Di j (s,s8)5D ji (s8,s) and Di j (s,s8)dr j /ds50.
The equation of dislocation motion is

dri~ t,s!

dt
52E Di j ~s,s8!

T

dH

dr j~s8!
ds8.

If Di j (s,s8) can be approximated by ad function,
Di j (s,s8)5d(s2s8)Di j , the dynamical equation of dislo
cation takes the form

dri~ t,s!

dt
52

Di j

T

dH

dr j~ t,s!
.

This equation must be valid if the dislocation velocity
much less than the characteristic velocity of micromotio
i.e., the speed of sound.

IX. FEATURES OF NONLINEAR ONSAGER’S RELATIONS

In this section, we will argue that the nonlinear version
Onsager’s relations~1.10! and~1.11! does not put constraint
on the functional dependence ofGm on Fm beyond the point
Fm50. If Gm are analytical functions ofFm , then these
constraints are just Onsager’s relations
06612
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Dmn~0!5Dnm~0!.

If Gm have a singularity atFl50, for example, as in plas
ticity theory, Dmn(Fl)5dmn(Fl)/AFsFs, then Eq. ~1.11!
yields the constraint

dmn~0!5dnm~0!.

However, as follows from further consideration, Eq
~1.10! and ~1.11! do not seem to be constraining the fun
tional dependence ofGm on Fm beyond the pointFm50.

Such a conclusion leads to a natural question: Why sho
one bother aboutm(m11)/2 functionsDmn(Fl) if the equa-
tions contain onlym functionsGm(Fl)? To close the system
of equations, one can prescribem functionsGm(Fl) which
possess the following two properties:]Gm/]FluFl50 is a

symmetric tensor andGm(Fl)Fm>0. There is an importan
reason, however, to write the dependenceGm on Fl in the
form ~1.10! and~1.11! with a provision that the closing of the
system of equations assumes prescribingm(m11)/2 func-
tionsDmn(Fl). As was shown by Kubo in the linear case a
as we have seen in Secs. II and III in the nonlinear case,
dissipation coefficientsDmn have an additional peculiarity
they characterize the correlations of fluctuations of therm
dynamic fluxes. Thus, the dissipation coefficients can be
termined, in principle, from the experiments which are ind
pendent of the direct measurements ofGm and Fm . We do
not know all the nonequilibrium properties of the system
we do not know the dissipation coefficients. In mathemati
modeling, the dissipation coefficients should be prescrib
along with the thermodynamic functions characterizing
equilibrium properties of the system.

After these general comments, we proceed to the der
tion of the statement made at the beginning of this sectio

Let Gm(Fl) be analytical functions at the pointFl50
vanishing at this point. We expandGm in Taylor’s series in a
vicinity of zero,

Gm5G0
mnFn1GmnlFnFl1GmnlkFnFlFk1•••.

~9.1!

TensorGmnl is, obviously, symmetric over indicesn,l, ten-
sor Gmnlk over indicesnlk, etc. We can rewrite the expan
sion ~9.1! in the form

Gm5Gmn~Fl!Fn ,

Gmn~Fl!5G0
mn1GmnlFl1GmnlkFlFk1•••. ~9.2!

TensorGmn(Fl) is not necessarily symmetric. The questio
is, could one find a symmetric tensorDmn(Fl)5Dnm(Fl)
such that the expansion~9.1! can be written as

Gm5Dmn~Fl!Fn ,

Dmn~Fl!5D0
mn1DmnlFl1••• ~9.3!

with some symmetric overmn tensorsD0
mn ,Dmnl, . . . . We

are going to show that this is possible.
6-20
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Let Gmn(Fl) be given. We are going to findDmn(Fl).
Compare the terms of the same power in Eqs.~9.2! and~9.3!.
Obviously, D0

mn5G0
mn . Equate now the quadratic terms

both expansions,

GmnlFnFl5DmnlFnFl . ~9.4!

TensorDmnl is symmetric with respect tom,n but not nec-
essarily symmetric overnl. TensorGmnl is symmetric with
respect tonl and not necessarily symmetric overmn. From
Eq. ~9.4!,

1

2
~Dmnl1Dmln!5Gmnl. ~9.5!

For a given tensorGmnl, Eqs.~9.5! may be considered as
system of linear equations forDmnl. This system admits an
explicit unique solution

Dmnl5
1

2
~Gmnl1Gnml2Glmn!. ~9.6!

Formula~9.6! can be checked by plugging Eq.~9.6! in Eq.
~9.5!.

So, if Gm(Fl) is a quadratic function, it can be present
in the form ~9.3!.

Consider now the terms of some powers, s.2. The co-
efficientsDmn1•••ns andGmn1•••s are linked by the equation

1

s
~Dmn1•••ns1Dmn2•••nsn11•••1Dmnsn1•••ns21!

5Gmn1•••ns. ~9.7!

We consider Eq.~9.7! as a system of linear algebraic equ
tions with respect toDmn1•••ns assuming thatGmn1•••.ns are
known. Let us compute the number of equations~9.7! iden-
tifying the equations obtained by permutation of indic
n1 , . . . ,ns . The number of equations is equal to the numb
of independent components of an (s11)-rank tensor which
is symmetric overs indices. This is equal to the space dime
sion m times the number of independent component o
symmetric tensor of ranks. The latter isCm1s21

s @29#. Thus,
the number of equations is

mCm1s21
s 5

m~m1s21!!

s! ~m21!!
.

The number of unknowns is equal to the number of indep
dent components of a symmetric tensor of second o
times the number of independent components of a symm
tensor of ranks21,

m~m11!

2
Cm1s22

s21 5
m~m11!~m1s22!!

2~s21!! ~m21!!
.

The difference between the number of unknowns and
number of equations is
06612
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m~m11!~m1s22!!

2~s21!! ~m21!!
2

m~m1s21!!

s! ~m21!

5
m~m1s21!!

s! ~m21!! S ~m11!s

2~m1s21!
21D

5
m~m1s21!!

s! ~m21!!

~m21!~s22!

2~m211s!

5
~s22!m~m221s!!

2~m22!!s!
.

It is seen that the number of unknowns is equal to the nu
ber of equations fors52 ~and, as we have seen, there is
unique solution in this case!, but for s.2 and m>2, the
number of unknowns is larger than the number of equatio

The only obstacle for the solvability of the system of Eq
~9.7! might be the linear dependence of the left-hand side
Eqs. ~9.7!. Let us show that they are, in fact, linearly ind
pendent. Assume the opposite: there is some nonzero te
amn1•••ns

symmetric over n1•••ns such that for any

Dmn1•••ns,

amn1•••ns
~Dmn1•••ns1•••1Dmnsn1•••ns21!50. ~9.8!

Equation~9.8! reduces to

amn1•••ns
Dmn1•••ns50.

The arbitrariness ofDmn1•••ns and their symmetry over the
first two indices yield the system of linear equations f
amn1•••ns

,

amn1n2•••ns
1an1mn2•••ns50. ~9.9!

This system has only a zero solution. Indeed, changing in
ces in Eq.~9.9!, one can also write

an2mn1n3•••ns
1amn2n1n3•••ns50 ~9.10!

and

an2n1mn3•••ns1an1n2mn3•••ns
50. ~9.11!

Using Eqs.~9.9! and ~9.11! and deducting Eq.~9.10!, we
obtain

2an1mn2•••ns50.

Thus, the left-hand sides of Eq.~9.7! are linearly indepen-
dent and Eqs.~9.7! are solvable.

So, without loss of generality,Dmn(Fl) can be chosen
symmetric, as claimed.

X. SECONDARY THERMODYNAMICS
„THERMODYNAMICS OF ATTRACTORS …

The special structure of macrophysical equations perta
to the ‘‘first level of averaging’’ when the system has on
two characteristic time scales. In many cases, there
6-21
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‘‘intermediate-fast variables’’ between the macrolevel a
the microlevel. In such cases, the quasi-Hamiltonian str
ture is characteristic for the equations governing
intermediate-fast and slow variables. Equations for sl
variables are obtained by elimination of the intermediate-
variables from the quasi-Hamiltonian equations. The co
sponding macrotheory may be called secondary thermo
namics or thermodynamics of attractors since the existe
of attractors is a characteristic feature of the qua
Hamiltonian equations. The examples of the intermedia
fast variables are the coordinates of defects in solids~vacan-
cies, dislocations, etc.!. The entire realm of plasticity is a
subject of secondary thermodynamics, as well as turbule
theory.

There might be many ‘‘thermodynamics.’’ The number
thermodynamics is equal to the number of the well-separa
time scales. Even the secondary thermodynamics is at em
onic stage. Some statements of secondary thermodyna
can be found in the book@10#. In particular, it was shown
@10,23# that the relations of secondary thermodynamics
vibrating systems are potential in the limit of vanishing fri
tion. Perhaps, similar facts hold for turbulent flows with hi
Reynolds number. Note also Ruelle’s paper@24# on attrac-
tor’s response to slow excitation.

APPENDIX A: A GENERAL FORM OF MICRODYNAMIC
EQUATIONS CONSISTENT WITH EQUILIBRIUM

THERMODYNAMICS

The term widely used in this paper, the Hamiltonian stru
ture, needs to be made more precice because any syste
differential equations can be written in a Hamiltonian for
@28#

dqi

dt
5

]H~p,q!

]pi
,

dpi

dt
52

]H~p,q!

]qi
. ~A1!

Indeed, let us have a system of ordinary differential eq
tions

dqi

dt
5Qi~q!. ~A2!

One can embed it in a Hamiltonian system of equations
introducing the additional variablespi(t) and determiningpi
from the equations

dpi

dt
52pk

]Qk~q!

]qi
. ~A3!

Equations~A2! and ~A3! form a Hamiltonian system with
the Hamiltonian

H~p,q!5pkQ
k~q!. ~A4!

So, we have to rectify what is understood under the te
‘‘Hamiltonian structure.’’

Modeling of any system begins with a description of
kinematics. Therefore, the starting point in the description
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a mechanical system is a choice of the phase space. After
choice is made, one has to specify the interactions in
systems, i.e., to define the HamiltonianH(p,q). To be con-
sistent with equilibrium thermodynamics, the Hamiltonia
must possess the following two properties: energy surfa
H(p,q)5const, bound compact regions with finite volum
in the phase space; and motion is ergodic on the ene
surfaces. These properties eliminate a pathological const
tion ~A2!–~A4! @obviously, the energy surfaces of the Ham
tonian ~A4! do not bound the regions with finite volumes#.

The above-mentioned features of microdynamics are
to deriving equilibrium thermodynamics from the underlyin
Hamiltonian mechanics. One may ask to what extent th
features define microdynamics, or, in other words, do mic
dynamic equations need to possess the Hamiltonian struc
in order to be consistent with equilibrium thermodynamic

We describe in this appendix, under natural assumptio
the microdynamic equations consistent with equilibriu
thermodynamics. They turn out to be slightly more gene
than the standard Hamiltonian equations.

Let the system be described by fast microvariablesx
5(x1, . . . ,xn) and slow macrovariablesy5(y1, . . . ,ym).
We consider the driven systems wheny variables are
changed in a prescribed way,y(t). Microdynamics is gov-
erned by a system of ordinary differential equations,

dxi

dt
5Fi~x,y!. ~A5!

We make the following assumptions.
~i! The x-phase space is split in a one-parametric set

hypersurfaces described by the equationH(x,y)5const with
a smooth functionH(x,y). For any fixedy, a trajectory start-
ing on a surfaceH(x,y)5const remains on the surface a
the time, i.e.,H(x,y) is an integral of motion,

]H~x,y!

]xi
Fi~x,y!50. ~A6!

Obviously, any vectorFi satisfying Eq.~A6! can be pre-
sented in a form

Fi~x,y!5v i j ~x,y!
]H~x,y!

]xj
, ~A7!

wherev i j (x,y) is an antisymmetric tensor field.
~ii ! For each fixedy motion is ergodic on the surface

H(x,y)5const.
~iii ! Tensorv i j in Eq. ~A7! is nondegenerate,

v5detiv i j iÞ0. ~A8!

An immediate consequence of Eq.~A8! is evenness of the
dimension of thex-phase space~remember that any antisym
metric matrix of an odd order has zero determinant!.

~iv! Vector fieldFi(x,y) is incompressible. Note that w
cannot write the incompressibility condition simply as

]Fi~x,y!

]xi
50 ~A9!
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because Equation~A9! is not invariant under coordinat
transformations. To put Eq.~A9! in an invariant form, one
has to includeFi in Eq. ~A9! with a factor which is a relative
scalar of the weight 1/2. The only scalar of this type whi
one can form from the above entries is 1/Av. Thus, we
specify the assumptionD by putting

]

]xi

1

Av
Fi50. ~A10!

~v! Tensorv i j characterizes the geometry of thex-phase
space and does not depend on specific interactions in
system. In other words,v i j depend only onx and do not
depend on the choice of Hamiltonian. Then, from Eqs.~A7!
and~A10!, the incompressibility constraint is a constraint
v i j (x) only,

]

]xi S 1

Av
v i j ~x!D 50. ~A11!
on
th

s

on
o
rm
se
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The systems possessing the properties~i!–~v! can be writ-
ten in the form

dxi

dt
5v i j ~x!

]H~x,y!

]xj
, ~A12!

where tensorv i j satisfies Eq.~A11!.
The system~A12! is of a more general form than tha

describing Hamiltonian flow on a symplectic manifold@30#.
The latter has the form~A12! with a provision that the
2-form V i j dxi`dxj , V i j being the inverse tensor forv i j ,
must be closed, or, equivalently, there is a covector fi
Pi(x) such that

V i j ~x!5
]Pi~x!

]xj
2

]Pj~x!

]xi
. ~A13!

Hamiltonian flows on symplectic manifolds obey the incom
pressibility condition~A11!. Indeed,
]

]xi S 1

Av
v i j D 5

1

Av

]v i j

]Vkl

]Vkl

]xi
2

1

2v3/2
v i j

]v

]vkl

]vkl

]Vmn

]Vmn

]xi

52
1

Av
v i l vk jS ]2Pk

]xl]xi
2

]2Pl

]xk]xi D 2
1

2Av
v i j Vkl~2vknvml!S ]2Pm

]xn]xi
2

]2Pn

]xm]xi D
5

1

Av
vk jv i l

]2Pl

]xi]xk
1

1

2Av
v i j vmnS ]2Pm

]xn]xi
2

]2Pn

]xm]xi D
50.
.
,

-

rgy
Here we used the definition of the inverse tensor,v i j Vk j
5dk

i , and its consequences:v i j V ik5dk
j , ]v/]v i j 5vV i j ,

and]v i j /]Vmn52v invm j.
The inverse statement is not true: incompressibility c

dition ~A11! does not necessarily yield closedness of
form V i j dxi`dxj since it imposes onlyn constraints on
n(n21)/2 functionsv i j (x). This number of constraints doe
not seem enough to reducen(n21)/2 functionsv i j (x) to n
functions Pi(x). Therefore, the systems~A11! and ~A12!
form a wider class than the class of Hamiltonian flows
symplectic manifolds. Note that Hamiltonian systems
symplectic manifolds can be put locally in the standard fo
~2.16! and ~2.18! by a coordinate transformation, becau
any differential form P1dx11•••1Pndxn (n iseven,n
52k) can be transformed locally top1dq11•••1pkdqk by
a change of coordinates.

We are going to show that Eqs.~A12! yield the classical
relations of equilibrium thermodynamics.

Consider the stationary Liouville equation

]

]xi S v i j ~x!
]H

]xj
r D 50.
-
e

n

Due to Eq.~A11!, it can be written also as

v i j
]H

]xj

]

]xi
~rAv!50. ~A14!

Therefore, it has a solutionr51/Av. Introducing, as in Sec
III, some curvilinear coordinates in thex-phase space
$za,h%, h5H(x,y), za5za(x), and denoting byD the
Jacobian of transformationz,h→x : dx5Dazdh, we get
the invariant measure on the energy surfacesrDdz.

For any functionw(x), the time average over the trajec
tory,

^w&5 lim
u→`

1

uE0

u

w„x~ t !…dt,

can be computed by means of integration over the ene
surface,
6-23
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^w&5

E wrDdz

E rDdz

. ~A15!

Equation~A15! can be written also in the form

^w&5E wrd„E2H~x,y!…dxY E rd„E2H~x,y!…dx.

~A16!

The denominator in Eq.~A16! can be expressed in terms
an invariant phase volume,

Ĝ~E,y!5E ru„E2H~x,y!…dx.

We have

E rd„E2H~x,y!…dx5
]Ĝ~E,y!

]E
[ĜE .

Let us introduce also the ‘‘standard’’ phase volume

G~E,y!5E u„E2H~x,y!…dx

and the ‘‘average value’’ ofr

r̂~E,y!5E ru„E2H~x,y!…dxY E u„E2H~x,y!…dx

5
Ĝ~E,y!

G~E,y!
.

Then the following relation holds:

K r̂

r
xi

]H

]xj L 5d j
i Ĝ

ĜE

. ~A17!

Indeed,

K 1

r
xi

]H

]xj L 5E xi
]H

]xj
d„E2H~x,y!…dxY ĜE

52E xi
]u„E2H~x,y!…

]xj
dxY ĜE

5E ]xi

]xj
u„E2H~x,y!…dxY ĜE

5d j
i G

ĜE

. ~A18!

Multiplying Eq. ~A18! by r̂, we get Eq.~A17!.
We interpret Eq.~A17! as an equipartition law, and thu

we introduce temperature by the formula
06612
T5
Ĝ

ĜE

. ~A19!

This formula is consistent with the thermodynamic relatio

1

T
5

]S~E,y!

]E
~A20!

if we introduce entropy as a logarithm of the invariant pha
volume,

S~E,y!5 ln Ĝ~E,y!, ~A21!

and identify the value ofH(x,y) with energyE.
Then the thermodynamic constitutive equation for t

forces,^]H/]ym&, is also true,

K ]H

]ymL 52T
]S~E,y!

]ym
. ~A22!

It follows from Eqs.~A16!, ~A20!, and~A21! that

K ]H

]ymL 5E r
]H

]ym
d„E2H~x,y!…dx/ĜE

52E r
]u„E2H~x,y!…

]ym
dxY ĜE

52
]Ĝ

]ymY ]Ĝ

]E

52T
]S

]ym
.

It remains to show thatS is an adiabatic invariant of the
system. Consider the energy equation

dE

dt
5

]H

]ym

]ym

dt
. ~A23!

Energy is a slow variable becausedym/dt are small. Averag-
ing Eq. ~A23! over time, we have

dE

dt
5K ]H

]ymL ]ym

dt
. ~A24!

From Eqs.~A22! and ~A24!,

dE

dt
52

1

]S/]E

]S

]ym

]ym

dt

or

d

dt
S~E,y!50
6-24
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as claimed. This completes the justification of the stateme
made.

APPENDIX B: SOME ESTIMATES

System~3.32! is ergodic by our assumption. Therefor
for any functionw(z) and almost allz,

1

t E0

t

w„x~ t̃ ;0,z!…d t̃ ——→
t→`

^w&5E w~z!
dz

GE
,

1

ut8u
E

t8

0

w„x~ t̃ ;0,z!…d t̃ ——→
t8→2`

^w&5E w~z!
dz

GE
.

If ^w&50, then the integral

I ~w!5E
0

t

w„x~ t̃ ;0,z!…d t̃

may tend to infinity ast→`. It must grow, however, more
slowly thant, so that the ratioI (w)/t tends to zero.

We need this integral, in fact, to go to zero ast→` at
least for functionsw5H ,n8 and for most initial points. The
assumption of mixing brings us closer to such a feature:
a mixing system, the following property holds@25#: for any
square integrable functionsw(z) andc(z),

E w„x~ t;0,z!…c~z!
dz

GE
——→
as t→6`

E w~z!
dz

GE
E c~z!

dz

GE
.

If average values ofw andc are zero, then

I wc~ t !5E w„x~ t;0,z!…c~z!
dz

GE
→0 as t→6`.

We accept a stricter condition of mixing,

E
0

`

uI wc~ t !udt is finite.
-

-

er
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This allows one to introduce a characteristic time of mixi
of functionsw andc, for example, as

twc5E
0

`

uI wcudt/AE w2~z!
dz

GE
E c2~z!

dz

GE
.

To obtain estimates justifying our approximations, the f
lowing two conditions are, perhaps, sufficient.

~i! There is a finite correlation time

t5supw,cPL2
twc .

~ii ! The correlation timet is much smaller than the char
acteristic time of change ofF(t,y) in t.

We give here just some rough estimates. Letu andDy be
characteristic scales for functionF(t,y) with respect tot and
y, respectively, andH ,n;a. Then from Eq. ~3.34!, F8
;ta]F(t,y)/]y, and the term neglected in Eq.~3.28! has
the order

a2t
1

Dy

]F~ t,y!

]y
1

1

Dy
a2t

]F~ t,y!

]y
.

This is much smaller than the kept term@which is of order
a]F(t,y)/]y] if

ta!Dy.

The function f (t,y) @and, thus,F(t,y)], as is seen from
Fokker-Planck’s equation, changes on scalesDy andu such
that

Dy

u
;a2t.

Thus, our approximation is valid if

t

u
!1.
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